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Abstract 

Soilborne fungal pathogens constitute an emerging threat to global food security. Many of the currently 

available chemical fungicides are highly toxic and extended environmental contamination. Therefore, 

biological control has been considered a viable alternative method to chemical control. In this study, out 

of 525 Bacillus isolates, 40 representative six species; atrophaeus, amyloliquefaciens, polymyxa, 

subtilis, simplex and tequilensis were compared for their in vitro antagonistic activity against four 

different soilborne fungal pathogens i.e. Cochliobolus sativus, Pyrenophora graminea, Fusarium 

culmorum and F. solani. Data showed that all Bacillus spp. isolates demonstrated different levels of 

antagonistic effect against the tested pathogens as compared with the controls. All Bacillus species had 

a higher antagonistic effect towards P. graminea (76.52%) and C. sativus (72.73%) as compared with 

the two Fusarium species F. culmorum (49.49%) and solani (57.32%) that are mycotoxins producers. 

Moreover, B. atrophaeus, B. amyloliquefaciens, B. subtilis and B. tequilensis provided the most 

noteworthy result as they strongly inhibited mycelial growth in comparing with B. polymyxa and B. 

simplex. Importantly, the B. tequilensis isolate (SY145D) had the highest antagonistic activity against 

the four fungal pathogens. The present results showed that the tested Bacillus spp., possess a broad 

spectrum of antifungal activities against different soil fungal pathogens. These in vitro antagonistic 

effects could be a strategic approach to control soil filamentous fungi.  
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1. Introduction 

Soilborne fungal pathogens are among the most 

important factors that cause considerable loss of 

crop yields worldwide. Some of the most common 

plant-pathogenic fungi belong to the genera 

Cochliobolus, Pyrenophora and Fusarium. Control 

of these pathogens  considered complicated due to a 

long period of persistence of their resting structures  

in the field and a broad host range of some species, 

and the difficulty of their manage once they reaches 

the vascular plant tissue since fungicides appear to 

be ineffective [1, 2]. 

Until now, suppression of these soilborne pathogens 

mainly relied on chemical fungicide. However, 

controlling just one of them might not fully solve 

the problem. Combinations of different fungicidal 

treatments are possible but not always desired due 

to their negative impact on the environment and 

human health.  

 

Biocontrol of plant fungal pathogens has been 

considered a viable alternative approach to chemical 

control. Many biocontrol agents were isolated by 

screening of the large number of soil or plant-

associated microorganisms for antagonism against 

phytopathogens in vitro or in planta [3]. Among 

those,  Bacillus species were attractive due to their 

unique ability to replicate rapidly, resistant to 

adverse environmental conditions as well as they 

have broad spectrum of biocontrol ability.  Different 

Bacillus spp. were identified for the control of 

diseases caused by phytopathogenic fungi [4, 5, 6]. 

Several species belonging to this genus have been 

used as biocontrol against various plant fungal 

diseases such as on soil-borne wheat diseases [7], 

rice blast [8], Fusarium wilt of cucumber [9], and 

currently, we have used Bacillus spp. against 

common root rot disease of barley [10].  

http://www.scialert.net/asci/result.php?searchin=Keywords&cat=&ascicat=ALL&Submit=Search&keyword=Biological+control
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/bacillus
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The antagonistic activity of Bacillus is associated 

with the synthesis of various antimicrobial peptides, 

secreted enzymes, proteins and volatile organic 

compounds [11, 12].  

The selection of Bacillus spp. as biological control 

agents usually starts with an in vitro screening of a 

collection of strains against selected pathogens by a 

nutrient broth (NB)  culture assay, in which the 

candidate biological control agent is co-cultivated 

with the pathogen on agar medium and its 

antagonistic activity is quantified in terms of 

inhibition of pathogen’s mycelium growth [13, 14].   

However, considering the broad spectrum of 

Bacillus antagonists reported over the past decades, 

different and more efficient Bacillus species 

antagonists might be around waiting for discovery. 

In the present work, six Bacillus species; 

atrophaeus, amyloliquefaciens, polymyxa,  subtilis, 

simplex and tequilensis were selected to study their 

in vitro antagonistic potential against four common 

and destructive soilborne fungal pathogens 

belonging to different genera i.e. Cochliobolus 

sativus, Pyrenophora graminea, F. culmorum and 

F. solani. 

2. Materials and Method 

2.1. Fungal isolates 

The virulent isolate (Cs 16) of C. sativus [15], 

virulent P. graminea SY3 [16], and F. culmorum 

(F3) and F. solani (F35) isolates [17] were used in 

the experiments. Isolates were incubated in Petri 

dishes containing potato dextrose agar (PDA, 

DIFCO, Detroit, MI, USA) supplemented with 13 

mg/l kanamycin sulfate and incubated for 10 days at 

20  ± 1 °C in the dark as we have described 

previously works [15, 16, 17]. 

2.2. Bacterial isolates 

Soil samples were randomly collected from 

different regions of Syria. They were taken from 3-4 

cm depth, collected in sterile polythene bag and 

stored at 4 C. Bacterial isolation was performed as 

described previously by [18]. From nutrient broth 

(NB)  culture, the colonies of prospective Bacillus 

sp. were identified according to [13], and the results 

are presented in Table 1. Six Bacillus species, 

namely, atrophaeus, subtilis, polymyxa, 

amyloliquefaciens, simplex and tequilensis, were 

selected for the further in vitro study. A pure culture 

of each Bacillus sp. isolates was first grown on NB 

and incubated for 24 h at 37 °C. 

2.3. In vitro evaluation of antagonism 

A total of 525 Bacillus isolates were screened on the 

bases of fungal growth inhibition. Bacterial isolates 

were streaked as thick bands on four opposite edges 

on the NA plates. Then 5 mm diameter disc of C. 

sativus fungus was cut from of an actively growing 

culture by a sterile cork borer and placed onto the 

center of above NA plates. The Petri dishes were 

sealed by parafilm and incubated at 25  ± 1 °C in 

dark for 4 days. Where mycelia disc on NA medium 

without bacteria was maintained as control. The 

above procedure was carried out to 40 isolates 

represent the six Bacillus species, and the 

antagonistic effect showed by bacteria was 

measured as zone of inhibition (the distance 

between the edge of antagonistic bacterial growth 

and the edge of tested fungal isolates) according to 

[19]. Experiments were performed in triplicate. 

The percentage of inhibition of radial growth 

(PIRG) was calculated by using the formula given 

below by [20]:  

PIRG (%) = (C-T)/C x 100 

where, C  is the radial diameter of the control 

colony and T is the radial diameter of the treatment 

colony.  

The PIRG was categorized on a growth inhibition  

category scale from 0 to 4, where 0 = no  growth 

inhibition; 1 = 0-25% growth inhibition; 2 =  26-

50% growth inhibition; 3 = 51-75% growth  

inhibition; 4 = 76-100% growth inhibition.  

2.4. Statistical analysis 

All experiments were conducted twice in triplicate,  

with ten Petri dishes per replicate, for each 

bacterium-fungus in vitro evaluation, using 

completely randomized designs. An F-test was used 

to determine if the two runs of each experiment was 

homogeneous and if the data could be pooled. The 

homogeneity of variance test indicated that the data 

from both runs of each experiment could be pooled, 

and thus all further analysis were conducted on 

pooled data. Data were analyzed using analysis of 

variance (ANOVA) and means were separated by 

Tukey's test (P ≤ 0.05). 

3. Results and Discussion 

In this study, a collection of 40 isolates of six  

Bacillus  spp.  were used as a source for 

identification of isolates with antimicrobial  activity 

against four soil borne pathogens in NA culture 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6353715/#b0115
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6353715/table/t0005/
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tests. Comparative analysis of antagonistic activity 

of Bacillus spp. showed that the tested Bacillus spp. 

isolates had significantly different levels of 

antagonistic effect against the pathogenic organisms 

(Fig. 1). However, a considerable variation was  

observed between and within the fungal and  

bacterial antagonists with regard to the inhibition of 

pathogen growth. Of the four pathogenic fungi that 

were tested in the study, P. graminea proved to be 

more sensitive to Bacillus spp. Isolates (PIRG =76-

100%), whereas, F. culmorum was less sensitive 

(PIRG =26-50%) (Fig. 1). No such changes were 

observed in control mycelia. 

The mean values of the growth inhibition percent of 

the tested pathogen are shown in Table 1. The 

largest growth inhibition of Bacillus spp. value 

approximately (75.35%) was induced by the isolates 

of B. amyloliquefaciens, B. tequilensis and B. 

subtilis, while the B. atrophaeus and B. Polymyxa 

isolates showed PGI values ranging from 53.08% to 

69.61%, respectively. B. simplex had the least 

antagonistic  potential (PIRG =37.72%) (Table 1). 

The B. tequilensis isolate (SY145D) had the highest 

antagonistic activity against the four fungal 

pathogens, with one inhibition ranged from 10-20 

mm (Table 2). 

The results, obtained here, of in vitro sensitivity of 

phytopathogenic fungi to antagonistic bacteria 

revealed that the isolates of Bacillus spp. were 

suppressive, though with different degrees, to the 

tested isolates of phytopathogenic fungi, were 

consistent with those obtained by others [21, 22]. 

The  inhibition of radial growth by the forming of 

an  inhibition zone against these pathogens is 

considered as antibiosis, whereby  the antibiotic 

metabolites may penetrate the  pathogen cell and 

inhibit its activity by chemical toxicity. Bacillus sp. 

produced several kinds of antifungal peptides 

(peptidolipid iturins), such as bacillomycin and 

mycosubtilin. that act on the fungi's cell wall  [8, 23, 

24] reported that the fungal  mycelial malformation 

might be due to the  antibiotic metabolites produced 

by the bacteria, which can penetrate and cause 

protoplasmic dissolution and disintegration. On the 

other hand, [25] showed that the production of 

hydrophilic enzymes to break down 

polysaccharides, nucleic acids and lipids might have 

been also involved.  Hence the most likely 

explanation for the growth reduction of pathogen by 

Bacillus sp. was that antifungal activity is increased 

by co-culturing of different bacterial species. 

Our results showed that  B. amyloliquefaciens, B. 

tequilensis and B. subtilis  had the largest growth 

inhibition of studied pathogens. In this regard,  [14, 

26, 27] reported that these Bacillus spp. added 

peptides and lipopeptides to the culture medium, 

such as fungicine, iturin, bacillomicine, among 

others, having antifungal properties when 

confronted in vitro against phytopathogenic fungi 

such as Rhizoctonia, Fusarium and Magnaporthe 

oryzae. 

On the other hand, our data demonstrated that these 

Fusarium species culmorum and solani were lesser 

antagonistic sensitivity (49.49% and 57.32%, 

respectively) as compared with the other pathogens 

(Table 1).  This might be attributed to the fact these 

both species produce a number of mycotoxins  and 

their action was evident in the various alternation of 

the hyphal  structure of Fusarium spp. isolates’ 

growth together with Bacillus spp. [20, 28], since 

our data showed that these both species were lesser 

antagonistic sensitivity (49.49% and 57.32%, 

respectively) (Table 1). similar to these effects  have 

been described in other systems of mixed cultures 

[29]. 

 
Table 1. Mean antagonistic effect of Bacillus spp. against filamentous fungi used in the study 

Table 1. Mean antagonistic effect of Bacillus  spp. against filamentous fungi used in the study

MeanF. culmorum F.solaniP. gramineaC. sativusNumber of isolatesBacillus  spp.

69.61bC49.23cB69.5bA87.41aB72.31b3B. atrophaeus

73.06aC53.61bA80.04aA85.43aB78.37a20B. subtilis

53.08A65.02aC30.30cB54.71bA62.35c2B. polymyxa

75.35a57.18b77.41a84.57a80.39a10B. amyloliquefaciens

74.84aC61.93aA76.68aA86.1aB72.92b4B. tequilensis

37.72cC10.00dC10.00dB60.9bA70.01b1B. simplex

C49.49B57.32A76.52A72.7340Total 

Values followed by different small letters ( columns) and preceded by capital letters (lines) differ significantly at level P<0.05.

Fungi

 

 
 

http://www.scialert.net/asci/result.php?searchin=Keywords&cat=&ascicat=ALL&Submit=Search&keyword=in+vitro
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Table 2. Inhibition zone* beetwen Bacillus spp. and filamentous fungi used in the study 
Table 2.  Inhibition zone *  between Bacillus spp. and  filamentous fungi used in the study

Bacillus spp. Isolates C. sativus P. graminea
 F. culmorum 

F.solani

B. atrophaeus

SY15B ++ +++ + +++

SY199A +++ +++ + ++

SY63E ++ +++ + +

B. subtilis

SY35A ++ +++ + +++

Sy41B +++ + + +++

SY44A +++ ++ + +++

SY60A +++ ++ + +++

SY73B ++ +++ + ++

SY113C ++ +++ ++ +++

SY116C +++ +++ + +++

SY118C +++ +++ + +++

SY124B +++ +++ + +++

SY130D ++ +++ + +++

SY132E +++ +++ ++ +++

SY133D +++ +++ ++ +++

SY132C +++ +++ ++ +++

SY134D +++ +++ ++ ++

SY135D +++ +++ + +++

SY139D +++ +++ + +++

SY151C ++ +++ + +

SY160C ++ +++ ++ ++

SY168C +++ +++ ++ +++

SY190E ++ +++ + ++

B. polymyxa

SY53C + +++ ++ +

SY55B ++ +++ ++ +

B. amyloliquefaciens

SY82C +++ +++ + +++

SY96C +++ +++ ++ +++

SY96E +++ +++ ++ +++

SY123A +++ +++ + +++

SY128B ++ +++ ++ ++

SY134C +++ +++ + ++

SY159D +++ +++ ++ ++

SY177C ++ +++ + ++

SY190D +++ +++ + ++

SY200D +++ +++ + ++

B. tequilensis

SY69A ++ +++ + ++

SY145D +++ +++ +++ +++

SY149C ++ ++ ++ +++

SY150D ++ +++ + ++

B. simplex

SY198B ++ +++ + +

*Inhibition zone: + ( weak), 0-10 mm; ++ (moderate), 5-10 mm and +++ (strong), 10-20 mm.

Fungi
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Figure 1. Antagonistic efficacy of Bacillus spp. against 

four soilborne fungal pathogens. Zone of inhibition (%) = 

(radial growth of the fungus in control - radial growth of 

fungus in treatment) / C ×100 

4. Conclusion 

- Taken together, the present results showed that 

the tested Bacillus spp., proved a broad spectrum 

of antifungal activities against C. sativus, P. 

graminea, F. culmorum and F.solani, which are 

pathogenic in cereal growing area.  

- Fusarium species culmorum and solani were 

lesser antagonistic sensitivity as compared with 

the other pathogens. Additionally, the largest 

growth inhibition of Bacillus spp. value 

approximately (75.35%) was induced by the 

isolates of B. amyloliquefaciens, B. tequilensis 

and B. subtilis.  

- Importantly, B. tequilensis isolate (SY145D) had 

the highest antagonistic activity against the four 

pathogens.  

- The next step, aiming to confirm the 

colonization ability of the selected isolates and 

testing its in vivo efficacy, which will be the 

subject of the follow-up investigation.  
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