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Abstract 

 
In this paper, are reminded the most important, from the point of 

view of approximation theory, properties of Chebyshev polynomials 
and give a short Maple procedure to compute the coefficients of the 
Chebyshev-Fourier Series expansion of a continuous function on the 
interval [-1,1]. 
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Introduction 
 

One common way of approximating functions is to use Taylor 
series expansions. This relies on the computation of the Taylor 
polynomials of the function up to a certain order, and approximating 
the given function through these Taylor polynomials (Iaglom, 1983; 
Mocica, 1988). While this is a relatively simple procedure in case of 
smooth functions, it cannot work for nondifferentiable continuous 
functions. Also the convergence of these approximations is not 
uniformly distributed on a given interval, towards the ends of the 
intervals the approximation errors being higher (Panaitopol, 1980). 

In order to avoid these problems, one can use different families of 
orthogonal polynomials – like Chebyshev’s, Laguerre’s, Legendre’s or 
Hermite’s (Dancea, 1973; Rudner, 1982). In the sequel, could be 
consider Chebyshev polynomials of the first kind (there is also a 
family of Chebyshev polynomials of the second kind). 
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Results and Discussion 

 
The Chebyshev polynomials of the first kind are known also as the 

optimal approximation polynomials on the interval [-1, 1]. They are 
defined as 
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In order to compute the Chebyshev polynomials of the first kind 
one can use also Rodriguez’s formula: 
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or the generating function 
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Another simple way of constructing Chebyshev’s polynomials 
relies on the recurrence relation 

),()(2)( 21 xTxxTxT nnn −− −=  ,2)( ≥∀ n   (6) 
starting with ,1)(0 =xT  and ].1,1[)(,)(1 −∈∀= xxxT  

Most useful for the approximation theory is the fact that 
Chebyshev’s polynomials of the first kind form a complete set of 
orthogonal polynomials with respect to the weight function 

:1)( 2xx −=ρ  
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The Chebyshev polynomials expansion, or Chebyshev-Fourier 
series expansion, of a function  on the interval [-1, 1] is then given 
by 
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The following Maple procedure allows the computation of the 
Chebyshev-Fourier Series coefficients up to a certain specified order 

 and computes the approximation of a function  using 
Chebyshev’s polynomials up to order  

,n f
.n

 
>Cheb_approx:=proc(f,n) local F,i,a; 
     F:=0; 
     for i from 0 to n do 
        if i=0 
         then a:=1/Pi*int(1/sqrt(1-x^2)*f(x),x=-1..1) 
         else a:=2/Pi*int(1/sqrt(1-x^2)*f(x)*orthopoly[T](i,x),x=-1..1) 
        fi; 
     F:=F+a*orthopoly[T](i,x) 
     od; 
     F 
end; 

 
Let us apply this procedure in order to compute the 5th Chebyshev 

approximation of the polynomial  2-32 47 XXX ⋅+⋅+
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> g:=unapply(Cheb_approx(x->x^7+2*x^4+3*x-2,5),x); 
 := g  → x −  +  −  +  + 2
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If is plotted (figure 1) the difference between the approximation 

function and the given polynomial:  

plot(g-(x->x^7+2*x^4+3*x-2),-1..1); 
could be seen that this difference is very small (in our case it’s absolute 
value is less then 0.016) 

 
Fig. 1. Difference between the approximation function and given polynomial 
 

Conclusions 
 

The approximation of a function using Chebyshev series expansion 
is of real interest, known the fact that Chebyshev’s polynomials are the 
polynomials of best approximation on the interval [-1, 1]. 
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